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Abstract—Drones are valuable assets across industries for a
variety of purposes, including but not limited to surveillance,
transportation, delivery, smart agriculture, etc. However, drone-
related studies may require significant costs to purchase, con-
figure, and deploy to study algorithms and how drones interact
with each other. Alternatively, drone simulators can provide a
lower-cost option to investigate drones and related algorithms.
Nevertheless, drone simulators on the market today tend to be
computationally heavy, have a steep learning curve, and may
be overwhelming for abstract problem-solving studies. There
is a need for an inexpensive and easy testing alternative for
researchers and for high-level algorithm development. In this
paper, we present a lightweight and easy-to-use drone simulator
that allows the definition of multiple drones with their sensors,
actuators, speed, and battery limit as well as their communication
among themselves. The simulator also allows the definition of
the simulation world using small blocks that can be defined
using different parameters. We presented two scenarios, such
as package delivery and survey area coverage, to show the
capabilities of the simulator. The simulator information can be
achieved from our group website.

Index Terms—Drone, Unmanned Aerial Vehicle, UAV, Simula-
tor, Package delivery

I. INTRODUCTION

Although drones, or unmanned aerial vehicles (UAV), are
conventionally thought of as tools for the military or toys for
hobbyists, their usage extends far beyond as they have been
considered for surveillance, transportation, delivery, disaster
relief, search and rescue, firefighting, and smart agriculture [1].
Drones can outperform these traditional methods compared
to other solutions such as helicopters because drones require
little to no physical infrastructure, are able to traverse areas
regardless of most terrain, are highly flexible, and can reduce
costs [1], [2]. Furthermore, many modern sensors and actuators
are small enough in size to be included in a drone. Thus,
drones have been even used by major companies, such as
Amazon Prime Air [3], (Alphabet-owned) Wing [4], and
UPS Flight Forward [5] for air transportation. USA Federal
Aviation Administration (FAA) shows that, as of now (July
2023), there exist 869,472 drones (348,057 commercial and

516,835 recreational drones) registered and 331,573 remote
pilots certified in the USA (as of July 2023) [6]. Overall drone
market was estimated to be around USD $27.4 billion in 2021
and is projected to reach USD $58.4 billion by 2026 [7].

As interest in drone technologies is growing fast, we need
techniques to simulate drone operations because drone deploy-
ment in the real world can pose several safety challenges, es-
pecially in populated environments [8]. Additionally, it would
be highly expensive and time-consuming to test a physical
drone in the real world. These simulations can be stand-alone,
approximate, and non-realistic or, on the opposite side, very
accurate, as the simulated drone runs as a real one would with
certain inputs and outputs [9]. In addition, these simulators
should be capable of creating an environment to fly, allowing
the use of sensors (e.g., cameras, lidars, GPS, microphones)
and actuators (e.g., brushless or servo actuators), in which
there are no unique simulators currently on the market that
work for all these aims [10]. There exist multiple drone
simulators such as XPlane [11], Flightgear [12], Gazebo [13],
JMavSim [14], Microsoft Airsim [15], and UE4Sim [16]
that have the capabilities of having many different physical
representations to provide a realistic simulation. The greater
majority of these simulators utilize a 3D engine, require
expensive systems and expertise to set up, and can even have
a licensing price. One widely adopted simulation software
among them is Gazebo, as it provides a comprehensive frame-
work to simulate drones and other 3D robotics environments
with extensive features and flexibility. However, it also re-
quires high computational complexity and has a very steep
learning curve, which makes it impractical for abstract-level
studies and experiments to create a drone-based environment.
Furthermore, there are many aspects of research related to
drones that simply do not require a 3D visualization, and a
simple 2D model could provide a sufficient environment. We
believe that there is a need for a more abstract, expandable, and
easier-to-use drone simulator that still has many of the critical
features and components contained within other simulators,
but makes them more accessible to people/groups who do not



have the experience with other simulators or do not need all of
the required features found in them. In this paper, we explain
our solution to this problem, the creation of a lightweight
drone simulator.

II. RELATED WORK

Research for drones and their potential use cases rely on
simulators and models created in order to experiment with
lower costs, fewer resources, and even less time. Chowdhury
et al. [17] and Rabta et al. [18] present models that focus on
drones and some of the different aspects that can affect the
usefulness of a drone in humanitarian efforts. Chowdhury et
al. [17] presents a Continuous Approximation (CA) model for
drones to transport emergency supplies in disaster situations,
where decisions are represented as variables and hence CA
can reduce the complexity of a model as a result. The affected
region is first divided into sub-regions, where the CA model is
used to determine system cost, ordering quantity, as well as the
most optimal area to operate from. They are able to solve the
issue with densely populated areas awaiting supplies as well
as managing supply inventory in a way that minimizes cost.
This model is useful for path planning dependent on unique
situations but does not address energy issues that drones could
possibly encounter in the field. Rabta et al. [18] presents
an optimization model for drones in humanitarian situations
that minimizes total travel distance to extend the operating
distance of a drone. In this model, energy consumption is
a function of payload and flight mode which considers the
possibility of eliminating trips to the base to recharge by
having the drone instead stop at charging stations installed on
the way to its destination. Eliminating the drone’s trip to the
base considerably increases its working distance and makes it
more useful for supply drop-off missions. In addition to this,
defined priority classes and priority rules that the drone follows
were discussed that may also be added to further optimize the
model.

Simulators currently available for public use offer similar
features, with some more streamlined options for a specific
purpose or product. UTSim [19] and Gazebo [13] are both flex-
ible simulators that offer a multitude of options in order to test
drone functionality and capabilities. UTSim is a user-friendly
drone simulator built using the Unity Platform and its intended
use is to simulate a variety of drones in environments that
contain both static and moving objects. The simulation itself
is highly customizable, with options available for manipulating
the environment, as well as drones. By utilizing Unity as the
simulator’s base engine, UTSim is characterized as an easy-
to-use and customizable simulation option for researchers.
However, because UTSim is using Unity as its engine, it
runs the risk of having higher system requirements than some
researchers may have access to. Gazebo is a popular, open-
source robotics simulator that offers a variety of custom 3D
landscapes. Gazebo’s main purpose is to create realistic worlds
that can be traversed by drones. This program allows you to
build various models of drones, equipped with different arms
and sensors that are then able to navigate through an envi-

ronment. These models can be curated by researchers, which
allows them to observe the drone-to-environment interactions
in the simulation. Therefore, Gazebo comes with performance
concerns due to system requirements.

Another simulation software popular in the industry is
AirSim built using the Unreal Engine [20] that offers physical
and visually realistic simulations for a variety of different
autonomous vehicles including drones. It is open-source with
its core components including its physics engine and various
models for environments, drones, and sensors which all have
independent utility from one another. AirSim aims to simulate
scenarios as realistically as possible by using popular protocols
such as MavLink to support its physics engine that operates
at a high frequency.

FlyNetSim [8] and the simulator presented by Fernando et
al. [21] are both examples of how simulators are developed to
study a specific niche or product in the market. Fernando et
al. [21] present a simulation developed in MATLAB Simulink
specific to quad-rotor UAVs. The dynamics of the quad-rotor
are modeled using Newton-Euler method which predicts the
forces and torques the four propellers on the drone generate.
Using the simulator built based on this model, various control
algorithms can be created and tested. A scalable and flexible
simulator, FlyNetSim, combines two open-source tools to
observe and evaluate UAV swarms and how they operate.
FlyNetSim interfaces the two open-source simulators, Network
Simulator (NS-3) and ArduPilot, using a lightweight middle-
ware layer to allow the simulator to analyze the large amount
of UAVs necessary in swarm situations. Using this technology,
FlyNetSim simulates the UAV network with considerably
reduced system resource usage. Regardless of its ease of
use, FlyNetSim limits itself by specializing in drone swarm
scenarios whereas Fernando et al. simulator remains specific
to quad-rotors.

III. METHODOLOGY

A. Overview and Assumptions

Our main assumption in this work is to create a lightweight
and easy-to-use simulator that has the core components and
modules comparable to the resource-heavy simulators cur-
rently being used in the world today with the intent to
have an abstract way of defining the environment and drone
behavior, as well as possible challenges, which can all be
defined by the user. The following modules were used to
create objects within our environment: Drones are capable of
moving through a simulated 2D environment, sensing their
surroundings, completing assigned tasks, and communicating
with each other. We give a brief description of each of these
modules to better understand how they work.

In our simulation, we define the smallest unit of time as a
‘tick’ – the iteration of the main simulation loop. This limits
the actions of individual components so that the proper order
of operations is maintained chronologically.



B. Definitions

1) Drone: We define a drone as an autonomous vehicle
capable of moving through a simulated 2D/3D environment,
sensing its surroundings, completing assigned tasks, and com-
municating with other drones. A physical drone consists of
a number of components such as motors and propellers, a
battery, a mission controller and planner (processors), some
sensors (e.g., camera, GPS, and IMU), and actuators (e.g.,
servo actuators), the initial location, and speed. We define all
these components in our simulation environment using a JSON
file, which is a lightweight data-interchange format. A sample
definition is shown in Listing 1 where a drone is defined with
an ID: 8, the battery is shown to have a maximum capacity
of 2,500 mAh, and the drone consumes 10 mAh per tick. The
drone is also defined to have a speed of 1 cell per tick with an
initial position (“init pos”) of (2, 1, 0) in the simulation space.
A position is defined by three integer values X, Y, and Z, where
X is the lateral direction, Y is the longitudinal direction, and
Z is the vertical direction. Please note that for the simplicity
of the simulator, currently we have only implemented X and
Y.

1"drones":
2[
3 {
4 "id":8,
5 "battery_max": 2500,
6 "battery_move_cost": 10,
7 "speed": 1,
8 "init_pos": [2, 1, 0],
9 "sensors" : {}

10 }
11]

Listing 1. Example of a section of a scenario JSON containing a drones list
and one drone item.

When a drone is called in the simulation, it checks its
current battery level to see if it is able to act or not, as well as
if the network has any messages for the drone and processes
them if any exist. Next, the drone decides how to act depending
on its current state and whether the action for its assigned task
is allowed by the simulation space. After the drone has acted,
it sends a new network message containing information about
itself, such as battery level, position, and its state. Finally, the
drone passes information about itself to the logger about its
state when it reaches the end of the tick.

a) Sensors: We define a sensor as an additional object as
a part of the drone object. The main purpose of sensors within
our drone is to provide the functionality to gather information
on the environment based on the position of the drone and
the attributes of its environment. By repeatedly sensing every
tick throughout the course of the simulation, we simulate a
realistic environment that can be used by all drones for better
route planning and task execution.

Each drone in a simulation can have zero or more sensors
associated with it. We use the “direction” attribute to define
direction relative to the drone, and “range” as the number of
blocks around the drone that the sensor attribute can sense.
Listing 2 shows an example of a section of a scenario JSON
containing a sensors list with two sensors. The first sensor is a

temperature sensor and has a range of 1 cell around the drone.
The second sensor is a hypothetical sensor to detect color with
a range of 5 cells in front of the drone to identify any possible
light sources (including fire).

1"sensors" :
2[
3 {"attr": "temperature",
4 "direction": "NONE",
5 "range": 1},
6

7 {"attr": "color",
8 "direction": "FORWARD",
9 "range": 5}

10]

Listing 2. Example of a section of a scenario JSON containing a sensors list
and two sensor items.

b) Actuator: Actuators are defined with a similar struc-
ture to sensors and this function contains methods to grab,
assign, and change a cell attribute when the drone at that
position is needed for package delivery or other actions.
Similarly to sensors, actuators also have “attr”, “direction”,
and “range” sections that function in the same way. Actuators
also have a “mode” which describes what actions they will
be able to perform. A sample actuator is shown in Listing 3
where the actuator is defined to have a mode of “GRAB”
to grab items and a direction of “BACKWARD” showing its
location on the drone with a range of 1 cell.

1"actuators":
2[
3 {"attr": "parcel",
4 "mode": "GRAB",
5 "direction": "BACKWARD",
6 "range": 1}
7]

Listing 3. Example of a section of a scenario JSON containing an actuators
list and one actuator item.

2) Simulation World: The simulation world is the repre-
sentation of the real world in the simulation, which contains
a 3D map (grid of cells) and interacts with it. For simplicity,
currently, we are building a 2D map, but it can be extended to
3D. We define the smallest building block of a map as a cell to
guide the drone (using it to show where the drone is located)
and to contain the information about characteristics of that
area such as possible obstacles (blocking the cell completely),
weather information such as temperature, humidity, etc. Cell
attributes are composed of a type and a value, where the type
is a string and the value is no specified type. An example is
“temperature” with a value of “72.0” (F◦).

3) Drone Communication: In the real world, drones can
communicate with each other to create complete autonomy
to coordinate their actions and avoid dangerous situations.
Additionally, drones may have different levels of autonomy
as some drones may be controlled by a human operator and
others may be fully autonomous. To simulate this, we model
communication between drones and ground controllers using a
network class that holds a list of messages with the capabilities
of adding, removing, and searching for messages. We define
messages as objects that contain a message type, sender device
identifier, receiver device identifier, and contents, which is a
dynamic list defined in message type (type and size). The



network facilitates communication between devices (drones
and ground controllers) through a message list. These devices
are able to search and filter for messages within the list that
correlate to their specific device ID. In Listing 4, we provide a
sample of communication of messages where there exist two
drones and one ground controller. The drones are identified
by their device ID of 1 and 2 and the ground controller is
identified by 0. At the beginning of the simulation, the drones
send messages for the path information and then their tasks
are exchanged.

1NET: 1: MessageType.INFO_UPDATE
2NET: 1: MessageType.REQ_PATH
3NET: 2: MessageType.INFO_UPDATE
4NET: 2: MessageType.REQ_PATH
5Controller: 0 ticking...
61.0909090909090908 : (0, 0, 0) (0, 0, 0) (5, 7, 0)
71.1111111111111112 : (2, 0, 0) (2, 0, 0) (7, 5, 0)
8Drone: 1 ticking...
9TASKING: IType.GOTO

10Drone: 1 At: (0, 0, 0)
11Drone: 2 ticking...
12TASKING: IType.GOTO
13Drone: 2 At: (2, 0, 0)

Listing 4. Sample communication details.

4) Tasks and Instructions: Drones operate either by directly
communicating with the ground control stations (so that users
can control them) or by a list of instructions defined in their
mission controller. To implement this behavior by creating
tasks for the drones as a list of instructions defined by the
user. Some of the instructions currently implemented include,
‘goto’, ‘fromto’, ‘wait’, etc. We also included parameters such
as execution time to show how many ticks are required to
complete that task.

We define a task for a drone as an ordered list of instructions
using a task identifier, a controller identifier, a drone identifier,
and a Boolean definition if it is tracked. The tracking Boolean,
if true, is used to demonstrate a task must be completed within
its deadline and if that drone cannot accomplish that task in
a timely manner, that task must be revoked and assigned to
a new drone. An example of such a case would be a drone
encountering some interrupts causing too much battery use to
complete the given task, the controller would then revoke the
task reinserting it into the task queue.

C. Simulator Components

In this section, we explain the individual components of
the simulator and how they are connected. The proposed
simulator parses different drone and simulation environment
configurations through a parser. Next, the configurations are
sent to the simulation engine, which will be used to create the
simulation environment, drones, their sensors and actuators,
and their tasks. In our simulation, since there can be more
than one drone, we also allow their individual communication
as well as their trust/reputation management. The overall
approach is presented in Figure 1. In what follows, we explain
the individual components.

1) Configuration Parser: The configuration parser uses 3
main different predefined configuration files (as explained in

Fig. 1. Breakdown of connection between individual modules within the
drone simulation.

Section III-B): environment, tasks, and drones. The environ-
ment configuration file contains the information necessary to
create a simple grid-like simulation world (composed of cells).
The drone configuration contains all the information for the
individual drones in the simulation. Finally, the scheduler file
includes a list of tasks that are distributed amongst all the
drones in the simulator.

2) Simulation Engine: The simulation engine is responsible
for the order of operations and mediating the interactions
between objects contained for every tick (i.e., every single
iteration in the main simulation loop defined as the smallest
period of simulation time). Within the simulation, we created
a tick function to execute functions (e.g., sensor and actuator
functions) as needed in order. First, the scheduler function
is executed, allowing tasks to be assigned to drones which
provides them with their destinations and paths (i.e., which
cells to visit). The drone is then ticked, which initializes its
interaction within the simulation space, moving to the next
iteration of its path array if available or following other logic
depending on its state and task. At the end of the simulation
tick, we can choose whether we want the simulation space to
be displayed depending on the scenario settings hard-coded in
the simulation module.

Another feature we included in our simulator is the “step
mode” function which, if enabled, allows the user to either
press the ‘enter’ keystroke to continue to the next tick of
the simulation or type ‘pause’ which halts the simulation and
allows user to select from a variety of commands, such as
adding a new drone, changing a drone’s target, etc. to alter
variables manually or execute other tools. If the function is
not enabled, the simulation will run through all iterations or
ticks until the code is complete, without user input to step
through each iteration.

When a drone travels from the source to the destination, the
‘cost map’ is calculated using Dijkstra’s algorithm to find the
shortest path cost. The path is initialized as an empty list which
will store the positions that the drone will move through. We
then create a 2D grid that represents the “cost” associated with
a position. We initialize the costs for all points to -1 at the



start, indicating that they are all unvisited cells. After creating a
“point queue” list and setting it equal to the initial position, we
can begin a loop that will continue until point queue is empty
or the destination is reached. For each of the surrounding cells
around our currently examined position, we can check if the
position is unvisited (still has a value of -1) or if the cost to
reach that cell is less than the previous cost.

3) Scheduler: The scheduler is responsible for distributing
tasks among the drones and ensuring those drones have all
the resources (e.g., sensors, actuators, and battery) necessary
to complete their given tasks; meanwhile, it also responds to
requests for tasks, requests for paths, and drone updates, all of
which are network messages. While an individual drone does
not have a complete view of the space it is in, the scheduler
keeps a record of every activity including what each drone has
encountered and can also update its model of the simulation
space based on drone updates.

The tick function of the controller works by using the
‘get messages’ function from the network in order to load
the list of open task messages into a local variable. We then
iterate through each of the messages in the list and filter out the
messages that are intended for that controller. We then process
the remaining messages based on the message type and utilize
various controller functions to do what is necessary for that
task. For example, if the message queue has a message with
message type ‘REQ TASK’, the tick will filter this message
out and call ‘reply req task’ which will process the message
and send the next network message for what it should do.

A sample is shown in Listing 5 where we define an
individual instruction with an instruction type, priority, and
parameters. The scheduler interacts with the network when it
is ticked to process the message created by the instruction,
such as ‘GOTO’, which sends a ‘reply task message’. This
back and forth between the network and controller continues
as we tick the simulation, and thus the scheduler, until the
messages associated with the task are fully processed. After
the drones receive their path from the network, the simulation
continues moving drones until the task is complete. It then
closes the task and sends a ‘GO HOME’ command to return
the drone to the base.

1"controllers":
2[
3 {
4 "tasks":
5 [
6 [ { "IType" : "GOTO", "Priority" : "LOW", "

Position" : [ 5, 7, 0 ] } ],
7 [ { "IType" : "GOTO", "Priority" : "LOW", "

Position" : [ 7, 5, 0 ] } ]
8 ]}
9]

Listing 5. Example of a section of a scenario JSON containing one task and
two task instructions.

D. Effector

The effector class was created to simulate rogue drone
behavior for testing and realistic behavior purposes as in a real-
world case, a drone can face indeterministic environmental

changes (e.g., sudden weather change, sudden obstacles such
as a bird) or cyberattacks and, thus may fail to complete
the scheduled task. If the drone did not complete the task
within the estimated amount of ticks the controller calculated,
the drone’s reliability and hence its trustability would be
negatively affected.

In order the implement this behavior, we apply the following
approach: After the initialization, the user can select from
a list of simulation scenarios written in JSON to quickly
and effectively change the simulation environment parameters.
Once the user selects a scenario from the list, the simulation
engine applies it to block cells so that the drone can not
propagate, edit drone parameters, and fail to complete tasks.

After the initialization is complete, we begin operating
through the simulation loop which is the actual driver of the
program. The simulation is initialized with just 3 boolean
values, representing the desire for logging simulation data,
stepping through each tick, and seeing the visualized envi-
ronment. The simulation engine ticks through iterations of the
drones’ positional movement, allowing us to see the updated
environment after every step. After every tick, the simulation
can accept either a pause or continue command. Pausing the
simulation enters command mode where various options such
as adding a new drone, adding a new blocked cell, exiting
the simulation, etc. are available to choose from. Any updates
to the simulation while in command mode are added and the
simulation resumes with the updated environment when the
“play” command is entered.

E. Trust Score Evaluator

During the interactions of the drones with the simulated
world using sensors and actuators, they can face various
unpredicted events that can result in failure of a task, dam-
age of drone(s), or even complete failure of drone(s). This
would highly affect the trustability of the individual drones
in a simulated environment similar to real-world scenarios.
Therefore, to take these cases into account, we introduced
a trust score evaluation to demonstrate the reliability of the
individual drones based on their activities. At the beginning
of a simulation, all drones are initialized with a Trust score
of 1 to represent full trust, but throughout the simulation their
trust scores are decremented due to factors such as pathing
efficiency and remaining battery level. The updated scores can
then be utilized by the scheduler to make informed decisions
on task assignments. This means that if the scheduler has a
new task to assign, it will take trust scores into account and
avoid assigning high-priority tasks to a drone that has not been
operating as expected. By eliminating faulty drones from task
assignments, the overall performance of the simulation can be
enhanced.

For the trust score evaluation, we use multiple formulations
as follows. if the drone completed its task in the estimated
amount of time calculated by the controller. As the ratio of
estimated ticks to actual ticks gets larger, the trust score of the
drone also increases with a max value of one, see Figure 2.
The trust score is updated by multiplying the current score



value by Estimated Ticks/Actual Ticks as shown
in Equation 1.

Trusttime = CurrentTrust× EstimatedTaskT ime

ActualTaskT ime
(1)

Fig. 2. Estimated/Actual Ticks vs Trust.

The simulator will trust a drone as long as it has 50% battery
or more (with the assumption of the fact that a drone needs to
leave from the source, finish a given task at the destination, and
return back to the source). Once it reaches that predetermined
threshold, the trust score begins to be decremented as shown
in Figure 3 as shown in Equation 2.

Trustbattery = CurrentTrust× CurrentBatteryLevel

MaxBattery × 0.5
(2)

Fig. 3. Remaining Battery vs Trust.

We can introduce further trust evaluation formulations and
then various techniques can be applied for a better scheduler
decision, which can be calculated using Equation 3 where α
and β can be decided based on the environment.

CurrentTrust = α× Trusttime + β × Trustbattery (3)

IV. EXPERIMENTAL RESULTS

A. Package Delivery Scenario

The first scenario we present is package delivery
(package-delivery.json), shown in Figure 4, which
contains a simulation space with nine packages and locations
for delivery for three drones. We also introduced three chargers
next to the initial package locations so the drones do not run

out of battery. We defined each package with cells containing
an attribute called ‘package’. The three drones have actuators
in which the actuator attribute is the string ‘package’ and
the mode is set to ‘grab’. Figure 5 shows the steps a drone
must take in order to complete an example task from the
package-delivery.json scenario.

Fig. 4. Package destinations for package-delivery.json scenario.

Fig. 5. Example of a singular task in the package-delivery.json scenario.

The execution of this scenario has no task interruptions
(such as blocked cells, environmental hazards, or other con-
ditions), which may impact a drone’s ability to complete its
tasks. The effector class is disabled to avoid incidents such
as network disruptions or bad pathing. The expected result
is that trust scores are 100% across all drones and tasks are
completed as expected. This is done to verify the maximum
trust score of 1 is achievable in optimal conditions.

We present the score of each drone during the execution in
Listing 6 where we show the drone ID, their trust, and the
estimated and actual ticks required to complete the tasks. The
score (trust score) is 1.0 for each of them, which means it
followed the expected path, took the estimated ticks, and had
acceptable battery usage.

The experimental run with blocked cells and the effector
class partially active alters the resulting trust scores of the tasks
completed. Within the experimental version of the scenario,
there are fifteen added blocked cells that are not accessible to
drones. The effector class is minimally active, only extending
the paths taken by drones so as to not interfere with any of
the drone’s ability to complete a given task. The scores and
behaviors change as shown in Listing 7. We also demonstrate
the environment using Figure 6 where drones are in the process



of delivering packages. The integer values, e.g. ‘1’ and ‘2’,
represent the device identifier of each drone. The character
‘X’ represents a blocked cell with obstacles that drone’ can
not enter. The character ‘A’ represents the final locations of
the packages delivered. The character ‘·’ represents an empty
cell.

1Drone_id: 3, Score: 1.0, Est: 20, Act: 20
2Drone_id: 2, Score: 1.0, Est: 25, Act: 25
3Drone_id: 1, Score: 1.0, Est: 27, Act: 27
4Drone_id: 3, Score: 1.0, Est: 25, Act: 25
5Drone_id: 2, Score: 1.0, Est: 30, Act: 30
6Drone_id: 1, Score: 1.0, Est: 35, Act: 35
7Drone_id: 2, Score: 1.0, Est: 30, Act: 30
8Drone_id: 3, Score: 1.0, Est: 43, Act: 43
9Drone_id: 1, Score: 1.0, Est: 36, Act: 36

Listing 6. Trust scores of each task displaying the drone identifer trust score
as a percentage and the estimated and actual ticks the drone took to complete
the given task.

1Drone_id: 3, Score: 0.909, Est: 20, Act: 22
2Drone_id: 1, Score: 0.844, Est: 27, Act: 32
3Drone_id: 2, Score: 0.625, Est: 25, Act: 40
4Drone_id: 3, Score: 0.862, Est: 25, Act: 29
5Drone_id: 1, Score: 0.733, Est: 33, Act: 45
6Drone_id: 2, Score: 0.800, Est: 32, Act: 40
7Drone_id: 3, Score: 0.915, Est: 43, Act: 47
8Drone_id: 1, Score: 0.879, Est: 29, Act: 33
9Drone_id: 2, Score: 0.810, Est: 34, Act: 42

Listing 7. Experimental run trust scores of each task displaying the drone
identifer trust score as a percentage and the estimated and actual ticks the
drone took to complete the given task.

B. Covering a Survey Area

This scenario survey-area.json contains multiple
cells with specific attributes that can be sensed by drones.
The scenario’s goal is to confirm that individual drones have
the ability to properly sense their environment and send
information via the network to the scheduler so that all drones
have access to this newly sensed data. This is important
because we depend on the sensors being accurate and reliable
in order to detect obstacles and attributes that may affect their
path. It is important to remember that in a real-life scenario,
the drones may not have all necessary information about the
environment prior to their run, so we may rely on the data
collected by its sensors to update the interpreted environment.

We demonstrate the scenario using Figure 7, where we
have a wall of cells with an attribute describing the current
temperature. The drone in the scenario has been equipped
with a temperature sensor. As the network receives messages
about the newly sensed data from the drone, it will output
the contents of those messages to the terminal window. We
conduct a secondary check when sending an output message
to the terminal, which ensures that a message has not already
been sent. This will help to avoid duplicating messages sent
to the network while the drone is making its return path.

As we can see from the Listing 8, the drone was successfully
able to sense its environment. As described in the methodology
section for “Message” earlier, the messages have the following
attributes: message type, sender id, receiver id, and a list of
“contents”. In this case, the sender ID is 1, as there exists
only one drone. The message type is “cell attribute,” which

Fig. 6. Visualizer output from tick 134 of the package delivery scenario
including blocked cells and effector active.

Fig. 7. Drone, D0, route while passing by a wall of cells with temperature
attributes.

tells us that we have newly sensed data. From the ‘content’
attribute of the messages, we observe 3 pieces of information:
the position of the sensed cell, the type of information that is
held within it, as well as the value associated with that type of
information. As expected, the first cell which is sensed within
the environment is (4,0,0) which is the first block to appear on
the right side of the drone while it is moving through its path.
As the drone moves toward its target, it encounters the rest of
the cells with attributes, first listing the reading at (4,1,1) all
the way until it reaches its target and displays the final reading
at (4,4,0). In this scenario, the drone was successfully able to
read all 5 temperature values and send network messages for
each one to allow public access to that information.

In addition we compared our experiments with Gazebo
simulator. While for a simple experiment, Gazebo requires



more than 1GB RAM usage for the simulations and one core
fully utilized, our proposed simulator uses only 120MB with
a full utilized core for a more complex simulation. This is
mainly due to the fact that the current simulators (Gazebo in
this example) provide a complete simulation with even moving
propellers for a more realistic look whereas our simulator
focuses on the abstract level for algorithm development.

We are planning to add additional scenarios throughout
different research topics and make the simulator accessible
on our group website [22].

11, 0, MessageType.CELL_ATTR, content : (4, 0, 0),
content : temperature, content : 36,

21, 0, MessageType.CELL_ATTR, content : (4, 1, 0),
content : temperature, content : 34,

31, 0, MessageType.CELL_ATTR, content : (4, 2, 0),
content : temperature, content : 32,

41, 0, MessageType.CELL_ATTR, content : (4, 3, 0),
content : temperature, content : 30,

51, 0, MessageType.CELL_ATTR, content : (4, 4, 0),
content : temperature, content : 28,

Listing 8. Output showing messages sent to the network due to the newly
sensed cells.

V. CONCLUSION

As the drone market continues to grow, the need for research
tools increases as well. Simulators are highly needed for drone
operations because experimenting with a physical drone in the
real world can be costly and unsafe. These simulators can have
a wide variety of features depending on the need for the work.
Most of the current simulators used in drone studies require
powerful systems and expertise, which may be overwhelming
for high-level decision-makers. Therefore, we need lightweight
and expandable simulators that can be a help for high-level
algorithm development and decision making. In this paper,
we explain the necessary components and modules to create
such a simulator. We have considered intricate details for
components to work well together and created the lightweight
tool. We plan to serve this simulator to the community as an
open-source tool.
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